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Experiments on ripple instabilities. 
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Resonant three-wave interactions among capillary-gravity water waves are studied 
experimentally using a test wavetrain and smaller background waves (noise) 
generated mechanically in a channel. The spectrum of the background waves is 
varied from broad-banded to one with discrete components. When the noise 
spectrum is broad-banded, the test wavetrain amplifies all waves in its low-frequency 
band of allowable triads B,, as anticipated from RIT (resonant interaction theory). 
When the noise spectrum has a discrete component in the high-frequency band of 
allowable triads B,, the test wavetrain selectively amplifies a triad with two waves 
from B,, contrary to expectations based on RIT. (Although, in accordance with RIT, 
no waves in B, are amplified.) We conjecture that the mechanism for selective 
amplification comprises a sequence of exceedingly weak, higher-order interactions, 
normally neglected in RIT. This sequence allows the small amount of energy in a 
discrete spectral component to cascade to two waves in B,, which then amplify, as 
anticipated from RIT, and dominate all other waves in B,. The conjectured sequence 
of nonlinear interactions is tested using both frequency and wave-vector data, which 
are obtained by in situ probes and by remote sensing of the water surface with a high- 
speed imaging system. Our predictions of selective amplification, as well as its 
absence, are consistent with all of the experiments presented herein and in Part 1.  
Selective amplification occurs for signal-to-noise (amplitude) ratios as large as 200, 
and its effects are measurable within ten wavelengths of the wavemaker. When 
selective amplification occurs, i t  has a profound impact on the long-time evolution 
of a ripple wavetrain. 

1. Introduction 
Capillary-gravity waves (ripples) on a water surface exhibit a variety of 

instabilities (for a review, see Craik 1985). For wavetrains with moderate amplitudes, 
these instabilities and typical scales can be identified using the dispersion relation for 
an infinitesimal wavetrain : 

c 2 : =  - o2 - g - - ( l + ~ ) t a n h k h ;  
k2 k 
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In ( l ) ,  w is the radian frequency, g is the gravitational force per unit mass, p is the 
mass density, T is the surface tension, h is the quiescent water depth, k is the 
magnitude of the wavenumber vcctor, c is the wave celerity defined in terms of these 
parameters, and T may be interpreted as the ratio of capillary and gravitational 
energies. These cncrgies are equal (7 = 1)  for a wavetrain whose cyclic frequency is 
f = w / 2 n  = 13.6 Hz and wavelength is h = 2 n / k  = 1.7 cm on clean, deep water (i.e. 
T = 73 dyn/cm and kh 9 1, as in our experiments and assumed hereinafter). An 
important instability of ripples was investigated by Wilton (1915), who found that 
internal resonances occur for a countable family of wavetrains corresponding to 

( 2 )  
1 
n 

T =  -, n = 2 , 3 ,  .... 

According to (1) and ( 2 ) ,  Wilton ripples have the same celerity as their nth harmonic. 
For example, second-harmonic resonance occurs for the n = 2 or T = t wavetrain, 
which has a frequency f = 9.8 Hz and wavelength h = 2.4 cm; both the 9.8 Hz and 
19.6 Hz harmonics have a celerity c = 23.8 cm/s. This member of Wilton ripples is 
also a degenerate case of a more general class of instabilities resulting from resonant 
three-wave interactions. Resonant triads can occur whenever the wavenumber 
vectors (wave vectors) k = (I, m) and frequencies w of three wavetrains satisfy the 
kinematical conditions : 

kl = k,  rtk,, 

w1 = w2*w3.  (3b) 

(The collinear n = 2 Wilton ripples satisfies the sum relation of (3) with k, = 2k, 
k ,  = k, = k ,  w1 = 2w, w, = w, = w . )  McGoldrick (1965) first noted that ripples can 
satisfy (3) for a continuum of wave frequencies. Simmons (1969) used a graphical 
construction to show that an initial wavetrain, say (wl, k l ) ,  whose frequency exceeds 
19.6 Hz (T = 2 ) ,  can form two types of triads. It satisfies (3) either with two waves 
(summed) from a lower-frequency (closed) band, B,, or with two waves (differenced) 
from a higher-frequency (open-ended) band, B,. When the initial wavetrain’s 
frequency is less than 19.6 Hz, only the high-frequency band of allowable triads 
exists. Simmons also derived the dynamical interaction coefficients (see the 
Appendix) for a resonant triad of ripples and showed that waves in B, could not be 
amplified when their amplitudes are infinitesimal relative to that of the initial 
wavetrain. (This result is generally true for resonant triads according to a theorem 
by Hasselmann 1967.) Waves in B, can be amplified; however, since the interaction 
coefficients vary smoothly across R,, Simmons conjectured that selective ampli- 
fication of waves in B, is unlikely. Instead, all of the background waves in this 
frequency band are expected to amplify. 

The present study is a continuation of Henderson & Hammack (1987, Part 1). In 
their experiments, a (test) wavetrain was generated mechanically in a channel and 
measured until it was extinguished by viscous damping. Results showed that 
wavetrains with frequencies greater than 19.6 Hz were unstable to background 
waves with frequencies in B,; however, in most experiments, one triad with two 
waves from B, was selectively amplified. The selected triad varied with the test 
wavetrain’s frequency ; however, it  amplified repeatedly, regardless of the test 
wavetrain’s amplitude, which was increased from the viscous threshold value until 
subharmonic cross waves evolved at  the wavemaker. Part 1 did not provide an 
explanation for either the presence of selective amplification in some experiments, or 
for its absence in others. 
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Surprisingly, the origin of selective amplification was discovered after a new 
computer system was installed in the laboratory. When the previous experiments 
were repeated with the new system, no triads were selectively amplified. When the 
experiments were repeated using the older computer system, selective amplification 
recurred. The reason for the different results was traced to the computers’ analog- 
output systems, which provided command signals to the wavemaker. Both devices 
were comparable in specification ; however, the inadvertent noise level a t  the 
electrical-power frequency of 60 Hz was lower (by about 5) for the newer device. This 
difference in 60 Hz noise levels, which corresponded to signal-to-noise ratios for the 
older computer of about 100, and about 200 for the newer computer, was sufficient 
to alter radically the evolution of test wavetrains. The sensitivity of ripple 
wavetrains to background noise, which is ubiquitous to all wave environments and 
generation mechanisms, is not expected from RIT (resonant interaction theory), and 
i t  has raised fundamental questions about the role of background noise. The 
objective of this study is to  clarify that role for two types of noise: one with a 
spectrum that is broad-banded and the other with a spectrum containing discrete 
components. 

An outline of the paper and our major results are as follows. Laboratory apparatus 
and practices are discussed in $ 2  with an emphasis on those aspects that differ from 
the detailed description in Part 1 and in Part 3 (Perlin & Hammack 1990). 
Experimental data are presented in $3 for test wavetrains subjected to broad-banded 
and discrete-component noise. No triads are selectively amplified in experiments 
using broad-banded noise. Instead, all of the resonant triads in B, are amplified in a 
manner consistent with the form of the interaction coefficient for the test wavetrain. 
Resonant triads with two members in Be are selectively amplified in experiments 
using noise with discrete component(s) in Bh. Both frequency and wave-vector spectra 
are measured to prove that the triads are resonant in accordance with (3). Previous 
results from Part 1 are reviewed to  show that an inadvertent noise component at 
60 Hz caused the selective amplification observed there. A conjectured explanation 
of selective amplification is presented, and an algorithm is described that predicts 
and rank orders the triad(s) that  can be selectively amplified by a background wave 
in B,. In  brief, selective amplification is the consequence of the following nonlinear 
interactions, normally neglected in RIT. The test and discrete-component noise 
wavetrains first become directionally unstable through a degenerate quartet 
interaction that will be described more thoroughly in Part 3. This directional 
instability allows a resonant triad to form that excites a wavetrain at the difference 
frequency between the noise and test wavetrains. In  accordance with RIT, the noise 
and difference wavetrains remain small ; neither evolve amplitudes exceeding that of 
the original noise wave. Then the difference and test wavetrains, also directionally 
unstable, form a higher-order resonant triad that excites a new difference wavetrain. 
This process repeats until a resonant triad is formed among the test wavetrain and 
two difference wavetrains with frequencies in Be; this triad then amplifies as 
anticipated from RIT and dominates all others. Selective amplification occurs for 
signal-to-noise ratios, based on amplitude, as large as 200. All of our conclusions are 
summarized in $4. Numerical solutions of both the inviscid and viscous three-wave 
equations are presented in the Appendix. 
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2. Laboratory apparatus and practice 
The ripple laboratory has been described in detail by Henderson & Lee (1986), 

Henderson & Hammack (1987, Part I), and Perlin & Hammack (1990, Part 3). 
Hence, the description herein is brief and concentrates on apparatus and practices 
particularly relevant to the results of $3. 

The wave tank was constructed of glass; i t  measured 91 em wide, 183 ern long, and 
15 em deep; i t  was supported on the ground-floor building slab through isolation 
pads. The wavemaker paddle consisted of a slender right-angled aluminium wedge 
that was 30.4 em wide and supported above the water surface astride the tank’s long 
axis ; the quiescent water surface intersected its midpoint. The paddle was oscillated 
vertically by a mini-shaker whose motion was servo-controlled with position 
feedback. (A f 1 V, 25 Hz signal caused the paddle to  move vertically about 

1 mm; above 25 Hz the motion is slightly amplified and below it is slightly 
attenuated.) When attached to the mini-shaker, the paddle assembly had a natural 
vibrational frequency of 94-95 Hz. Parallel aluminium (wetted) sidewalls set 
adjacent to the paddle provided a test channel 91 em long and 30.5 em wide. A closed 
water-supply system provided deionized water that  was filtered of organic materials 
and particulates with sizes above 0.2 pm. Water surface elevations a t  fixed locations 
in the tank were measured with in situ capacitance gauges. The diameter of the 
water-penetrating probe was 1.17 mm (compared to 1.47 mm in Part 1); it provided 
a flat response signal for frequencies up to 30 Hz (compared to 5 Hz in Part 1). 

2.1. The computer systems 

The experiments of Part 1 used a 16-bit DEC (Digital Equipment Corporation) 
MicroPDP- 11 computer system for control and data acquisition. Sinusoidal 
command signals to the wave generator were provided by a Data Translation 12-bit 
analog-output system (DT2771) coupled with a DEC programmable clock (KWV11- 
C). Analog signals from wave gauges, command signals to  the wavemaker, and 
position-feedback signals from the wavemaker paddle were digitized by a Data 
Translation 12-bit analog-input system (DT2782) coupled to a second programmable 
clock. Prior to  digitizing, the analog signals were low-pass (Butterworth) filtered 
with a cutoff of 100 Hz, amplified 20 dB, high-pass filtered with a cutoff of 1 Hz, and 
amplified another 20 dB. Periodograms (energy spectra) of filtered analog signals 
were computed using fast Fourier transforms (FFTs) ; results were obtained in the 
frequency band 0-100 Hz with a resolution of 0.39 Hz. (These results corresponded 
to 2’ data points during a 2.56 s time interval.) 

The newer laboratory computer system, used in the present study, was a 32-bit 
DEC VAXstation 11. Real-time control and data acquisition were provided by a 
DEC 12-bit analog-output system (AAV11-DA) and a 12-bit analog-input system 
(ADV11-DA) ; each was supported by a DEC programmable clock (KWV11-C). 
Software support for control, data analysis, and graphical output were provided by 
Signal Technology’s Interactive Laboratory System. Analog signals were filtered and 
amplified as in Part 1. They were then digitized so that amplitude-frequency spectra 
(hereinafter termed frequency spectra) could be computed over the band 0-125 Hz 
with a resolution of 0.015 Hz. (These results correspond to  214 data points in a 65.53 s 
time interval.) 
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FIGURE 1 .  Schematic drawing (plan view) of the wave channel and coordinate system. 

2.2. The high-speed imaging system 

Semi-quantitative spatial data were obtained using a Kodak EKTAPRO 1000 
Motion Analyzer. This computer-based video system records images at rates up to 
1000 f.p.s. (frames per second). Each frame is composed of 240 x 192 pixels a t  which 
light intensity is measured with a resolution of 256 grey levels. Digitized frames were 
transferred from the EKTAPRO 1000 system to the VAXstation I1 computer 
system using a communications interface, which also allows the VAXstation I1 to 
control the imaging system. 

Images of wave patterns inside the test channel were obtained using an overhead 
camera whose focal plane was parallel to, and 1.5 m above, the water surface. A 
schematic drawing (plan view) of the test channel is presented in figure 1 ; it shows 
the wavemaker, surface coordinate system, and the surface area from which 
quantitative spatial data were obtained. The channel was lighted by two 600W 
halogen lamps in reflector housings located at the downstream end of the wave tank. 
The lamps were positioned above the tank, astride its centreline, and aimed a t  the 
test channel so that the incident light formed an angle of about 32" with the water 
surface. An opaque (white) sheet of Plexiglas was placed underneath the glass 
bottom of the tank in the vicinity of the test channel. A detailed description of the 
lighting arrangements as well as calibration tests to determine the nature of images 
obtained by the overhead camera are presented by Perlin & Hammack (1990, Part 
3). There it is shown that video images were formed by diffuse light scattered upward 
by the opaque Plexiglas and refracted by the water surface so that wave crests and 
troughs appeared as light and dark bands, respectively, in the images. The measured 
light intensities, which spanned 225 grey levels, were related to water depths (or 
wave amplitudes). Although this relationship is not known precisely, relative grey 
levels among pixel sites were found to yield accurate two-dimensional amp- 
litude-wavenumber spectra when the wave amplitudes were sufficiently small and 
the water surface comprised a small number of wavetrains. (Comparisons between a 
time series of grey levels a t  a single pixel site and that from a nearby wave gauge 
yielded a linear correlation coefficient of 0.89.) Two images viewed on the video 
monitor are shown in figure 2 where the test channel is inclined a t  an angle of 45". 
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FIGURE 2.  Overhead images of the water surface viewed on the video monitor. (a) Quiescent water 
surface ; data from the square area that is delineated by a black border are used to compute the 
wave-vector spectrum. (b) 25 Hz wavetrain (at = 1.2 V) of experiment R25N60.01. 
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Images are surrounded by a frame border that provides information on the video 
settings, such as the 125 f.p.s. used herein. Figure 2(a) shows the quiescent water 
surface in the test channel while figure 2 ( b )  shows a 25 Hz wavetrain from 
experiment R25N60.01. The waves are propagating from the lower left to the upper 
right corner of the image. 

Although images contained 240 x 192 pixels, only 128 x 128 were used to  compute 
the two-dimensional wavenumber (or wave-vector) spectrum. These 214 data points 
fill the (22 cm x 22 cm) area delineated by the black border in figure 2 (a)  and shown 
schematically in figure 1.  The area was oriented a t  an angle of 45" to the channel axis 
to provide accurate information for both positive and negative m-wavenumbers. 
(FFT computations fold information into the positive wavenumber quadrant ; hence, 
if the image is aligned with the channel axis, waves propagating a t  negative angles 
to that channel axis would be averaged with waves a t  corresponding positive angles.) 
This image orientation limits the accuracy of calculations to waves propagating at  
less than k45" to the channel axis. The dimensions of the sampled area yield a 
wavenumber resolution of 0.0453 cm-l or 0.284 rad/cm. The physical distance 
between pixel sites in the images was 0.174 cm, providing a spatial sampling rate of 
5.75 cm-' or 36.11 rad/cm; hence, the Nyquist (spatial) frequency is 2.87 cm-l or 
18.06 rad/cm. This spatial frequency corresponds to a temporal frequency of 106 Hz 
in the experiments; temporal data show very little energy a t  this frequency. 

Images were obtained for analysis in the following manner. First, an experiment 
was performed with an in situ wave gauge. Then, the gauge was removed to provide 
an uninterrupted overhead view. The quiescent water surface was imaged, and the 
experiment was repeated and recorded on video tape at 125 f.p.s. The background 
grey level for the quiescent water surface at each pixel site was subtracted from each 
image; then the mean grey level for the array was subtracted. The resulting two- 
dimensional array of grey levels, which provided a measure of the vertical 
deformation of the water surface from its quiescent position, was then used to 
calculate the wave-vector spectrum. 

3. Evolution of ripple wavetrains in the presence of background noise 
Here, experimental results are presented for the evolution of ripple wavetrains in 

the presence of smaller background waves. Both the test and background wavetrains 
are generated simultaneously by the wavemaker. This procedure raises the following 
cautionary note. The dynamics of all wavemakers and the coupling between the 
wavemaker and water (e.g. see Flick & Guza 1980) are inherently nonlinear. (Even 
the electro-dynamics of the analog-output devices that provide command signals to 
the wavemaker are weakly nonlinear.) Hence, when the wavemaker is commanded 
to oscillate at a single frequency, additional motions a t  superharmonic freyucncies 
occur. When commanded to oscillate a t  two frequencies, additional motions at  
superharmonic, sum, and difference frequencies occur. All of these motions, as well 
as the nonlinear coupling with the water, generate free water waves that satisfy (1)  
and coexist with bound waves of the same frequencies that do not satisfy (1). These 
waves are small when the dynamics are weakly nonlinear, as they are herein. 
Unfortunately, capillary-gravity waves can be affected profoundly by small 
background waves. Accordingly, we measured both the command signal to, and the 
feedback signals from, the wavemaker in all experiments ; t,hese data are presented 
when appropriate. 
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3.1. Discrete-component spectral noise 

Previous results from Part 1 are summarized in table 1 for eleven experiments 
labelled CGzzzz. The measured frequencies (resolved to 0.39 Hz) are given for the 
test wavetrain and wavetrains selectively amplified from background waves. Two 
waves from B, were selectively amplified in nine experiments; no selective 
amplification occurred in two experiments. The frequency range of B, and the lower 
frequency limit of Bh for each test wavetrain are also presented in table 1. These 
ranges were calculated by first noting that wavetrains a t  the frequency limits arise 
from considerations of collinear triads (see Part 1) .  Hence, the vector (sum) relation 
of (3a) can be replaced by a scalar relation on wave-vector magnitudes. Second, we 
allow a finite amount of detuning 9 defined by 

9:= - 

so that 9 = 1 corresponds to perfect resonance; 9 < 1 implies detuning, since (3a) 
would not be satisfied even for collinear wave vectors; and 9 > 1 implies perfect 
resonance for a noncollinear triad. In the calculations of table 1 we have taken 9 = 
0.98 to allow for the small detuning that is consistent with experimental observations. 
(These frequency ranges differ from those quoted in Part 1, since less detuning was 
allowed there.) 

As mentioned previously, selective amplification in the experiments of Part 1 was 
a consequence of 60 Hz electrical noise from the analog-output device that provided 
command signals to the wavemaker. The analog-output device in the newer 
computer system also produced 60 Hz noise; however, its level was lower and no 
selective amplification occurred. These results are illustrated in figure 3, which shows 
frequency spectra for the command signals (column d ) ,  wavemaker feedback signals 
(column e ) ,  and wave gauge signals (column f )  in three experiments (rows a,  b,  c ) .  
Each experiment used a 25 Hz test wavetrain whose command-signal amplitude was 
d,, = 1.2 V. (The wave gauge was located a t  (z,y) = (7, -4.7) cm.) The spectra in 
row (a) were obtained using the older computer system (MicroPDP- 11) to provide the 
command signal; these results correspond to experiment CG2512 in table 1 (figure 10 
in Part 1). The spectra in row ( b )  were obtained using the newer computer system 
(VAXstation 11) to provide the command signal. The spectra in row ( c )  were obtained 
by adding a 60Hz signal, with d60 = O.O048V, to the 25Hz  signal of the 
VAXstation 11. (In fact, 0.0048 V is the smallest voltage resolved by the analog- 
output device ; hence, the superposed 60 Hz signal is rectangular, rather than 
sinusoidal.) The spectral amplitudes are presented in arbitrarily scaled units of dB 
(20 dB corresponds to a factor of 10; in general, log (factor) = (dB/20)). The same dB 
scale is used for the spectra in each column of figure 3 so that relative comparisons 
are meaningful. 

The wave-gauge frequency spectra in column ( f )  of figure 3 show the following: 
selective amplification of 10 and 15 Hz wavetrains in the experiment of row (a ) ,  as 
found in Part 1 ; no selective amplification in the experiment of row (b)  ; selective 
amplification of 10 and 15 Hz wavetrains in the experiment of row (c). Hence, the 
addition of a small 60 Hz signal (which decreased the signal-to-noise ratio by about 
3.7) in the command signal of the newer computer system precipitates selective 
amplification. In  Part 1 it was conjectured that the 10 and 15 Hz wavetrains were 
resonant with the 25 Hz wavetrain because of their relatively large amplitudes and 
the cycling of their energies during propagation. The water-surface imaging system 

(4) 
k, + k, 
kl ’ 

3-2 
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FIGURE 4. Contour maps of wave-vector spectra for experiments using a 25 Hz test wavetrain; 
h = 5 em, T = 73 dyn/cm. (a) d,, = 1.2 V, d6, = 0.0048 V, 5, = 33 cm; (b) d,, = 1.2 V, d,, = 
0.010 V, 5, = 33 em; (c) dg5 = 0.6 V, d,, = 0.060 V,  5, = 23 em. 

allows us to test this conjecture by providing wave-vector spectra that determine 
whether the resonance condition of (3a )  is satisfied. Contour maps of wave-vector 
spectra for three experiments are presented in figure 4. The results in figure 4(a)  
correspond to the experiment of row ( c )  in figure 3;  the results in figure 4 ( b )  
correspond to an experiment in which the 60Hz signal of the VAXstation 11 is 
increased to equal that of the MicroPDP-11; the results of figure 4(c)  correspond to 
an experiment in which the amplitude of the 25 Hz wavetrain is reduced (dZ6 = 
0.6 V) and the amplitude of the 60 Hz signal is increased = 0.06 V).  All of the 
experiments in figure 4 show that the 25 Hz wavetrain has directionally spread its 
energy along a (nearly) circular arc corresponding to its dispersion curve (circle). This 



Experiments on ripple instabilities. Part 2 63 

phenomenon is in consequence of a Benjamin-Feir- type instability to transverse 
modulations, i.e. a degenerate resonant quartet interaction, which is described in 
Part 3. Dispersion circles for 10 and 15 Hz wavetrains are also shown in figure 4. The 
dominant spectral amplitudes in all three experiments lie along the dispersion circles 
for the 10, 15 and 25Hz wavetrains (to within the computational resolution of 
0.284 rad/cm). The directional spreading of energy for each of these wavetrains 
enables them to satisfy easily the wave-vector equation of (3a);  hence, these 
wavetrains form resonant triads as conjectured in Part 1. Sample wave-vector 
diagrams of (3a) are shown in figure 4(c). Note that they can be rotated to  many 
orientations, and that the 10 and 15 Hz vectors can be interchanged ; hence, there is 
a spatial distribution of (10, 15, 25) Hz triads in the channel. 

The results in column ( f )  of figure 3 suggest that selective amplification is caused 
by an exceedingly low level of 60 Hz noise in the command signal. The spectral 
amplitudes of the command signals in column (d )  of figure 3 are similar for 
frequencies less than 30 Hz showing a dominant peak with an amplitude of 124 dB 
at  25 Hz. (Since this amplitude is known to be 1.2 V, voltages can be found at other 
frequencies.) Above 30 Hz, the command signal of the MicroPDP-11 contains a 
discrete component at 60 Hz with a peak of 0.0109 V. (Other peaks correspond to 
superharmonic frequencies a t  50 and 75 Hz, both 0.0036 V, and sum and difference 
frequencies a t  70, 65, 35, and 15 Hz, all less than 0.001 V.) The command spectrum 
of the VAXstation I1 (row b, column d )  contains only a 60Hz peak with an 
amplitude of 0.0019 V, which is about b that  of the MicroPDP- 11. Even when a 60 Hz 
signal with an amplitude of 0.0048 V is intentionally added to the command signal 
of the VAXstation 11, no additional discrete components occur in its spectrum. 
Hence, the newer analog-output device is also less nonlinear than the older system. 
Selective amplification occurs when the amplitude of the 60 Hz noise in the command 
signals exceeds 0.0019 V+0.0048 V z 0.0070 V, which is about &, or 46 dB below 
that of the 25 Hz signal. This measured threshold is lower than that predicted by a 
viscous RIT (see the Appendix, $A.2), which requires the noise component to have 
a threshold amplitude about $ that  of the test wavetrain. 

3.1 . l .  Explanation of selective amplijication 
We conjecture that selective amplification of two wavetrains in B,, by a test 

wavetrain f, of moderate amplitude and a small-amplitude background wavetrain f ,  
in B,, occurs as follows. First, the test and background wavetrains become 
directionally unstable as seen in figure 4. This step is crucial to selective amplification 
because the test and noise wavetrains are initially collinear and generally cannot 
satisfy (3a). The directional instability allows the wavetrains with the correct 
frequencies (3b)  to also have the correct angles to satisfy (3a). Hence, they form a 
resonant triad with the difference wavetrain (fo- f,). The difference wavetrain 
cannot amplify, in accordance with Hasselmann’s theorem ; however, numerical 
computations (see the Appendix) show that i t  does exchange energy with f,,. The 
difference wavetrain then becomes directionally unstable so that a new resonant 
triad with frequencies ( f , ,  fo -fl, 2f1 - f o )  forms. Again, the new difference wavetrain 
cannot amplify, but exchanges energy with the previous difference wavetrain (see the 
Appendix). This process continues until a difference wavetrain with a frequency, say 
f2, in B/ is excited and becomes directionally unstable. Then a resonant triad forms 
with frequencies ( f,,f2,f3 = f, -f,). Since the small background waves in this 
resonant triad have frequencies in B,, they can exchange energy with the test 
wavetrain and amplify (see the Appendix). 
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The above scenario comprises exceedingly weak nonlinear interactions that are 
normally ignored; yet, when they occur, they determine the wavetrains that will 
dominate an experiment. For definiteness, consider a test wavetrain with a steepness 
ak that is O(a)  and a discrete-component noise wavetrain whose steepness is O(p) 
such that p 4 a 4 1. Then the minimum interaction order needed to selectively 
amplify a resonant triad with two waves in Be is O(a2p), and directional instabilities 
of O(a3) are required to satisfy (3a).  In  fact, additional difference waves, each smaller 
in wave steepness, were required in all of the experiments reported herein and most 
of those in Part 1 before the triad with waves in Be was selectively amplified. For 
example, the 25 Hz wavetrain used in the experiments of figures 3 and 4, and 
throughout the study presented herein, was shown in Part  1 to have a25 x 0.2. Since 
a 60 Hz command signal of about &j that  of the 25 Hz wave caused selective 
amplification, and since the wavenumber of a 60 Hz wavetrain is about twice that of 
the 25 Hz wavetrain, we estimate p6,, x 0.002. The first resonant triad interaction 
produces a 35 Hz wavetrain whose steepness is O(aP) x 4 x ; the second resonant 
triad interaction produces a 10 Hz wavetrain whose steepness is O(a2P) x 8 x lop5; 
the third resonant triad interaction produces a 15 Hz wavetrain whose steepness is 
O(a3P) x 1.6 x lop5 (hereinafter, we refer to each succeeding resonant triad as higher- 
order). Even though these higher-order triad interactions are exceedingly weak, their 
impact is measurable within ten wavelengths of the wavemaker. Experiments also 
indicate that if the low-frequency wavetrains in the selected triad have a difference 
wavetrain in Be, then the selected triad can cause the amplification of an additional 
resonant triad, which comprises wavetrains with even smaller steepnesses. (This 
triad, in turn, may produce another higher-order triad.) The above scenario is 
contained in an algorithm that is shown schematically in figure 5 ; results of applying 
the algorithm to the experiments of Part  1 are given in table 1. Note that the 
algorithm correctly predicts both the selectively amplified wavetrains in those 
experiments and the absence of selective amplification for two experiments. The 
algorithm also predicts the higher-order resonant triads, which can be selectively 
amplified for some test and noise wavetrains; these triads are ranked according to 
their expected order of occurrence. 

3.1.2. Further experiments on selective ampliscation 

Further tests of the conjectured explanation of selective amplification given above 
are presented in this section. First, noise spectra with discrete components a t  
frequencies other than 60 Hz are introduced and their spectral amplitudes, relative to 
the amplitudes of the test wavetrains, are varied. Then the effects of varying the 
spectral amplitude of the noise component relative to the surrounding spectral levels 
are examined. 

Figure 6 shows the frequency and wave-vector spectra obtained during an 
experiment (R25N57.01) that used a 25 Hz test wavetrain and a 57 Hz noise 
wavetrain whose command signal amplitudes were 1.2 V and 0.001 V, respectively. 
For these waves, the algorithm of figure 5 (see table 1 )  predicts the possibility of 
selectively amplifying two resonant triads with frequencies of (25, 7,  18) Hz and 
(25, 11,  14) Hz through nonlinear interactions of O(a3P) and 0(a6pz), respectively. 
The frequency spectrum of figure 6 (a ) ,  which was obtained from wave-gauge data a t  
(z, y) = (7 ,  -4.7) cm, clearly shows spectral peaks a t  7 and 18 Hz. The wave-vector 
spectrum in figure 6 ( b )  confirms that the 7 and 18 Hz wavetrains are resonant with 
the 25 Hz wavetrain. Dispersion curves for each of these wavetrains and a sample 
wave-vector diagram of (3a )  are superposed on the wave-vector spectrum. Note that 
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FIGURE 5. Algorithm for calculating the resonant triads selectively amplified from the low- 
frequency band B, of a test wavetrain fi when a discrete infinitesimal background wave f,, in the 
high-frequency band B, is present. The steepnesses of test and background wavetrains are O(a)  and 
O(p), respectively, with p 4 a 4 1. 

each of the spectral peaks for these three wavetrains can be connected by a wave- 
vector diagram such as the one shown, i.e. dominant orientations exist in the spatial 
distribution of this resonant triad. 

It is not surprising that the higher-order (25, 11, 14) Hz resonant triad was not 
selectively amplified in the experiment shown in figure 6, since the small-amplitude 
60 Hz noise in the experiments of Part 1 never selectively amplified higher-order 
triads (see $3.1.1). In  order to  determine if higher-order triads can be amplified, the 
command signal amplitude of the 57 Hz noise wavetrain was increased to d,, = 
0.1 V. Frequency spectra for this experiment (R25N57.10) a t  seven downstream 
positions are shown in figure 7. Spectral peaks proliferate a t  the first measurement 
station (x = 7 em), occurring a t  a variety of sum and difference frequencies among 
the 25 Hz wavetrain, its superharmonic, and the 57 Hz wavetrain. The spectral 
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FIGURE 6. Wave amplitude spectra for a 25 Hz test wavetrain (d = 1.2 V) in the presence of a 
57 Hz background wavetrain (d = 0.01 V) ; h = 5 cm, T = 73 dyn/cm. (a )  Frequency spectrum at 
(qy) = (7, -4.7) em; ( b )  contour map of wave-vector spectrum, q, = 33 em. 

amplitudes a t  7 and 18 Hz are already nearly as large as that  at 25 Hz ; the 57 Hz 
peak is quite small, less than that a t  60 Hz. During evolution the peaks a t  1 1  and 
14 Hz disappear and re-emerge, indicating a resonant cycling of energy. In  addition, 
all of the spectral peaks, except those a t  7,  11, 14, 18, and 25 Hz, disappear with the 
7 Hz wavetrain dominant at the last station. The wave-vector spectrum, obtained 
from a sampling region beginning at ko = 33 cm, is shown in figure 8 with dispersion 
curves superposed a t  the frequencies of 7, 11, 14, 18 and 25 Hz. The 7 Hz wavetrain 
is again dominant; in fact, very little energy remains in the 25 Hz wavetrain. It is 
also apparent from figure 8 that the 11 and 14 Hz wavetrains form a resonant triad 
with the test wavetrain. Hence, selective amplification of higher-order triads does 
occur when the amplitude of the component-noise wavetrain, relative to that of the 
test wavetrain, is increased. 

Figure 9 shows the frequency and wave-vector spectra obtained in an experiment 
(R25N52.05) that used a 25 Hz test wavetrain and a 52 Hz noise wavetrain; the 
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FIQURE 7. Spatial evolution of the amplitude-frequency spectrum for a 25 Hz test wavetrain 
(d = 1.2 V) in the presence of a 57 Hz background wavetrain (d = 0.1OV); h = 5 cm, 
T = 73 dyn/cm. 
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FIGURE 8. Contour map of amplitude-wave-vector spectrum for a 25 Hz test wavetrain (d = 1 
in the presence of a 57 Hz background wavetrain (at = 0.10 V) ; h = 5 cm, T = 73 dyn/cm, 
33 cm. 

.2 V) 
2" = 

command signal amplitudes were 1.2 V and 0.05 V. respectively. The algorithm of 
figure 5 predicts that no resonant triads should be selectively amplified from B, in 
this experiment. According to that algorithm, the 25 and 52 Hz wavetrains should 
directionally spread their energy and excite a resonant triad with a 27 Hz difference 
wavetrain, whose amplitude should not exceed that of the 52 Hz wavetrain. These 
waves appear in the frequency spectrum of figure 9(a); only the 25 Hz and 27 Hz 
wavetrains appear in the wave-vector spectrum of figure 9(b), since the amplitude of 
the 52 Hz wavetrain is below that of the first contour level. Next, the 27 and 25 Hz 
wavetrains interact to yield a difference wavetrain of 2 Hz, and an amplitude peak 
at 2 Hz appears in the frequency spectrum of figure 9 (a). However, the wave vectors 
for these three waves cannot satisfy (3a) so that the 2 Hz difference wavetrain must 
be bound, and i t  must have a wavenumber of about 0.39 rad/cm, which differs from 
the free-wave value of 0.16 rad/cm. The wave-vector spectrum of figure 9 ( b )  shows 
an extremum a t  k = 0.4 rad/cm, in agreement with expectations. No extremum is 
apparent a t  k = 0.16 rad/cm ; however, our spatial resolution of wavenumbers 
(0.284 rad/cm) prevents definitive conclusions. It should also be noted that the 
initially collinear 25 and 52 Hz wavetrains interact to form a 27 Hz bound wave, 
whose (bound) wavenumber magnitude is 4.63 rad/cm. A circle with a radius of 
4.63 rad/cm is shown in figure 9 ( b ) ,  and the spectrum shows significant amplitudes 
for these 27 Hz bound waves, as in figure 9(a ) .  

There is another aspect of wavetrain evolution in the experiment of figure 9 that 
should be emphasized. A 25 Hz (free) wavetrain and a collinear 2 Hz (bound) 
wavetrain interact to form a collinear 23 Hz wavetrain, whose wavenumber 
magnitude is 5.94 rad/cm, which happens to satisfy the dispersion relation. Hence, 
the 23 and 25 Hz wavetrains are resonant and form a degenerate resonant quartet 
that corresponds to the classical longitudinal Benjamin-Feir instability. (See Part 3 
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FIGURE 9. Wave amplitude spectra for a 25 Hz test wavetrain (d = 1.2 V) in the presence of a 
52 Hz background wavetrain (d = 0.05 V) ; h = 5 cm, T = 73 dyn/cm. (a )  Frequency spectrum at 
(z,y) = (7, -4.7) cm; ( b )  contour map of wave-vector spectrum, zo = 33 cm. 

for a more detailed description of Benjamin-Feir type instabilities for ripples.) 
According to analytical predictions for the Benjamin-Feir instability (see Part 3), 
the most unstable sidebands for a 25 Hz wavetrain, whose steepness is 0.2, have 
frequencies of 21.9 and 28.3 Hz;  the unstable frequency band is 20.7-29.7 Hz. All of 
these predictions are consistent with the frequency and wave-vector spectra of figure 
9. Unlike frequency spectra in previous experiments that use the 25Hz test 
wavetrain, figure 9 (a )  shows substantial sideband amplitudes, and the wave-vector 
spectrum shows significant amplitudes along the dispersion curve of a 23 Hz 
wavetrain. (Difference wavetrains in the previous experiments were outside the 
unstable band for Benjamin-Feir instabilities.) Hence, the selection mechanism for 
resonant triads can also selectively amplify resonant quartet interactions, at  least 
when resonant triads are not possible. 

Figure 10 shows results from an experiment that used a 25 Hz test wavetrain 
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FIGURE LO. Wave amplitude spectra for a 25 Hz test wavetrain (d = 1.2 V) in the presence of three 
background wavetrains with frequencies 59.5, 60, and 60.5 Hz (d = 0.01 V for each of the 
background waves); h = 5 cm, T = 73 dyn/cm. (a) Frequency spectrum a t  (s, y) = (7,  -4.7) em; 
(b) contour map of wave-vector spectrum, so = 33 cm. 

(dZ5 = 1.2 V) and a noise spectrum that contained three discrete components in B,,. 
The noise components had frequencies of 59.5, 60, and 60.5 Hz and command signal 
amplitudes of 0.01 V. In this experiment, selective amplification by each noise 
component appears to occur simultaneously. The frequency spectrum of figure 10 (a )  
shows the selective amplification of three wave pairs (9.5/15.5 Hz, 10/15 Hz, 
10.5/14.5 Hz), as predicted by the algorithm of figure 5. The wave-vector spectrum 
in figure lO(b)  shows bands about the dispersion curves for these waves. Note that 
the contour lines in this spectrum are scaled identically to those in the experiment 
of figure 4 ( b ) ,  which used only a 60 Hz noise wavetrain. Comparing these two wave- 
vector spectra confirms the increase in wave energy near the 10 and 15 Hz dispersion 
curves, as expected from the amplification of nearby resonant wavetrains. 
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FIQURE 11. Amplitude-frequency spectra for a 25 Hz test wavetrain (d = 1.2 V) in the presence 
of random background waves; h = 5 cm, T = 73 dyn/cm. Row (a )  no random waves; row ( b )  SNR 
= 40 dB; row (e )  SNR = 30 dB; row (d) SNR = 25 dB; row ( e )  SNR = 20 dB; column (f) 
command signal; column (9)  wave-gauge signal at (x,y) = (7, -4.7) cm. 

As discussed earlier, the spectral amplitude of a discrete component in B, must 
exceed a threshold amplitude above the surrounding noise levels in order to cause 
selective amplification. Rather than decrease the amplitude of the noise wavetrain 
relative to the natural background waves in the channel, as was illustrated by the 
results of figure 3, it is also instructive to generate pseudo-random waves directly, 
and increase their amplitude relative to the noise wavetrain. This was accomplished 
with a command signal containing a 25 Hz signal (dZ5 = 1.2 V), a 60 Hz signal 
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FIQURE 12. Averaged amplitudefrequency spectrum of naturally occurring background waves 

(93) in the wave channel; wave gauge at (z,y) = (7, -4.7) cm. 

(de0 = 0.01 V), and ‘white’ noise at a specified signal-to-noise ratio (SNR) defined 
as 

r.m.s. of test wavetrain signal 
r.m.s. of white noise signal 

SNR = 

where r.m.s. is the root-mean-square of deviations of the time series from its mean 
value. The SNR of the 60Hz wavetrain is about 125 (42dB), which was held 
constant in these experiments. (Note that the wave vectors for all wavetrains input 
by the wavemaker were initially collinear ; however, according to the results of Part 
3, wavetrains with frequencies greater than 9.8 Hz are expected to spread 
directionally their energy.) Figure 11 shows frequency spectra for the command 
signals (column f) and wave-gauge records (column g )  for a series of experiments in 
which the SNR of the random waves was varied from 100 (40 dB) in row (b)  to 10 
(20 dB) in row ( e ) .  The frequency spectra of row ( a )  resulted when no random waves 
were added. The wave spectrum of row ( a )  shows the selective amplification of 10 and 
15 Hz wavetrains, as seen previously ; both have comparable spectrum amplitudes. 
When random waves were added so that the SNR = 100 (40 dB) in row ( b ) ,  which is 
comparable to that of the 60 Hz noise wavetrain, the background spectral level over 
the entire frequency band of 1-100 Hz is, surprisingly, slightly lowered. In addition, 
the spectral amplitudes of the 10 and 15 Hz peaks are reduced, as are the 
superharmonics of the test wavetrain. When the SNR, of the random waves is 
decreased to 32 (30 dB) in row ( c ) ,  the 15 Hz peak disappears, along with the 75 Hz 
superharmonic of the test wavetrain. The background spectral level over the entire 
frequency band of 1-100 Hz is slightly raised. As the SNR decreases further in rows 
(d )  and (e ) ,  the 10Hz peak gradually disappears and the spectrum becomes 
somewhat bimodal from 5 to 20 Hz, the span of B,. No selective amplification is 
apparent in row (e )  where the r.m.s. of the test wavetrain is ten times larger than that 
of the background waves. 

3.2. Broad-banded spectral noise 
In  this section we examine nonlinear interactions between a test wavetrain and 
background waves whose spectrum was broad-banded. The command signals to the 
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FIQURE 13. Evolution of averaged amplitude-frequency spectrum (9) of the random waves 

down the wave channel. 

wavemaker consisted of psuedo-random waves (white noise) plus a 25 Hz wave, i.e. 
no discrete noise components were added. The signal-to-noise ratio (SNR) was fixed 
a t  10 (20 dB) and the command signal amplitude of the 25 Hz wavetrain was 1.2 V. 
Since only the statistical properties of the white noise were controlled, ensemble 
averages of 16 independent records are used to smooth the final results. 

Experiments were conducted in the following manner. First, 16 time series of 
wave-gauge data were obtained sequentially, and frequency spectra were computed 
for the natural background noise in the tank when the wavemaker was powered, but 
not moving. These 16 frequency spectra were averaged to obtain a representative 
spectrum for the natural background noise, (a),  in the tank. Then 16 experiments 
were conducted using white-noise command signals to the wavemaker. Wave-gauge 
data were obtained and analysed for each experiment and an average frequency 
spectrum for the random waves in the presence of the tank’s natural background 
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FIGURE 14. Evolution of averaged amplitude-frequency spectrum (A”), which shows the effects of 
nonlinear interactions, down the channel ; h = 5 cm, T = 73 dyn/cm. Inset shows theoretical 
interaction coefficients. 

noise, (92 + W), was computed. Then 16 experiments were performed with the 25 Hz 
wavetrain (only) to find an averge frequency spectrum for the test wavetrain in the 
presence of the tank’s natural background noise, (Y +a). The test-wavetrain signal 
was then added to  the 16 command signals of white noise and 16 more experiments 
were conducted and analysed to find an average frequency spectrum for the test 
wavetrain with random waves and the tank’s background noise, (F + 92 + a). These 
four average spectra were then combined linearly to find the average frequency 
spectrum for the random waves alone, i.e. (9) = (92+B)- (W), the test wavetrain 
alone, i.e. (Y) = ( F + W )  - (a), and to display the effects of nonlinear interactions 
by calculating 

hence, (N) is null if nonlinear interactions are insignificant. (We tacitly assume that 
the natural background noise in the tank is sufficiently small to interact linearly with 

(N) : = (F+ w + 43) - (Y) - (9) - (W) ; (6) 
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the random and test wavetrains.) The series of experiments and calculations outlined 
above were performed a t  three gauge sites downstream of the wavemaker. In  
addition to wave-gauge data, we also analysed the command and wavemaker 
feedback signals; all these time series required the collection and analysis of 50 mB 
of data a t  each gauge site. 

Figure 12 shows the ensemble-averaged frequency spectrum for the natural 
background noise (49) in the tank obtained a t  ( x , y )  = (7 ,  -4.7) cm. (This result is 
typical of background noise measurements a t  all gauge positions.) The amplitudes of 
background noise are distributed smoothly and fairly uniformly over the frequency 
band 1-100 Hz. (The spectral peak at 60 Hz is the ubiquitous electronic noise.) 
Figure 13 shows the ensemble-averaged frequency spectra of the random wavetrains 
(A?) a t  three downstream positions. At the first measurement site, x = 7 cm, the 
spectral amplitudes begin increasing near 2 Hz, reach a maximum of about 16 dB 
near 7 Hz, and decrease thereafter with negligible amplitudes above 20 Hz. At x = 
14 cm, the random waves are still confined to  the frequency band 2-20 Hz; however, 
amplitudes are more uniformly distributed with a 12 dB maximum. At the last 
measurement site ( x  = 21 cm), a general downshift in amplitudes has occurred with 
a maximum of 16 dB at about 5 Hz; presumably, this downshift is a consequence of 
viscous damping, which increases with wave frequency. 

The main results of these experiments are presented in figure 14 where the 
ensemble-averaged spectra ( N )  are shown for three downstream measurement 
stations. Note that (N) is not null, indicating that significant nonlinear interactions 
occurred. At the first measurement station (z = 7 cm), wave amplitudes in a 
frequency band lG22  Hz increased with a maximum amplification of 8 dB a t  19 Hz. 
Note that most of this frequency band lies in the low-frequency continuum B, for the 
25 Hz test wavetrain. Wave amplitudes in the high-frequency continuum B, 
decreased, down 8 dB near 100 Hz. At x = 14 cm wave amplitudes in the frequency 
band 1-7 Hz decreased by about 4 dB. In  the range of 7-22 Hz, wave amplitudes 
increased in a bimodal manner with maxima near 12 and 19 Hz and a minimum near 
15 Hz. Beyond 22 Hz, wave amplitudes at x = 14 cm show no amplification or 
attenuation ; hence, the waves in B, actually amplified since propagating from x = 
7 cm. At the last measurement site ( x  = 21 cm), wave amplitudes from 1 4  Hz 
remained lowered while wave amplitudes in B, decreased again. The waves in Bt 
remained amplified with the bimodal distribution observed a t  the previous station. 
This distribution is remarkably similar to the variation of the dynamical interaction 
coefficient y1 (Part 1 and the Appendix) over B, for the 25 Hz wavetrain ; see the inset 
to figure 14(c). (A similar variation appears in row ( e ) ,  column (9)  of figure 11 . )  Hence, 
all waves in the low-frequency continuum are amplified in accordance with 
predictions of RIT for single triads when the background noise spectrum is broad- 
banded, i.e. there are no discrete components that cause selective amplification. 
None of the waves in the high-frequency continuum are amplified, also in accordance 
with the predictions of RIT for a single triad. However, the energy of waves in B, 
does appear to cycle (down and back) during propagation, similar to the behaviour 
observed in the numerical computations of the Appendix. 

4. Summary and conclusions 
The evolution of ripple wavetrains generated mechanically in a channel was 

studied in the presence of different types of background waves (noise). Frequencies 
of the test wavetrains exceeded 19.6 Hz so that resonant triad interactions were 
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possible. Two types of background noise spectra were used : spectra that had discrete 
components and spectra that were broad-banded. Amplitude-frequency spectra 
were computed using measurements of in situ wave gauges ; two-dimensional 
amplitudewavenumber spectra were computed using spatial data obtained by 
remote sensing of the water surface with a high-speed imaging system. These data 
allowed definitive tests that established the existence of resonant triads in the 
experiments. 

Experiments using noise with discrete spectral components in the high-frequency 
continuum, B,, of allowable resonant triads for a test wavetrain showed that two 
waves in the low-frequency continuum, B,, of allowable triads could be selectively 
amplified - even when the SNR (signal-to-noise ratio based on amplitudes) was as 
large as 200. Selective amplification was not expected since the interaction 
coefficients for a resonant triad vary smoothly with frequency in B,. (Waves in B, did 
not amplify, in accordance with expectations based on RIT.) It was conjectured that 
selective amplification resulted from a sequence of higher-order interactions that 
allowed the small amount of energy in the noise wavetrain to cascade to two waves 
in B,. In the conjectured scenario, a Benjamin-Feir-type instability, observed 
experimentally herein and described more thoroughly in Part 3, played an essential 
role. This instability allowed wavetrains with frequencies greater than 9.8 Hz to 
directionally spread their energy. The scenario for selective amplification is the 
following. First, the test and noise wavetrains become unstable according to the 
directional instability. They are now properly directed to excite a resonant triad with 
a wavetrain a t  their difference frequencies. The difference and noise wavetrains 
cannot be amplified by the test wavetrain in accordance with Hasselmann’s theorem ; 
however, they can exchange energy with each other. The difference wavetrain then 
becomes properly directed through the directional instability to excite a resonant 
triad with the test wavetrain and a new difference wavetrain. This process repeats 
until two difference wavetrains with frequencies in B, are excited that form a 
resonant triad with the test wavetrain. These two waves can be amplified by the test 
wavetrain, and their subsequent growth dominates all other resonant triad 
interactions. At each step in this sequence, there is a spatial distribution of resonant 
triads. If the difference wavetrain between the two waves in B, also lies in the low- 
frequency continuum, higher-order triads can result. This scenario comprises 
exceedingly small, higher-order interactions, normally ignored in RIT. Yet, it 
correctly predicts the observed frequencies in all of the experiments of Part 1,  and 
all of the experiments presented herein. 

When the background noise spectrum is broad-banded, no waves in B, are 
selectively amplified. Instead, all of the waves in this frequency band grow in 
accordance with the interaction coefficient for the test wavetrain. Waves in the high- 
frequency band do not amplify ; however, there is experimental and numerical 
evidence that they cycle their energy during propagation. Both types of behaviour 
are in accordance with predictions of resonant interaction theory for a single triad. 

In  one experiment herein, a sideband (degenerate) resonant quartet was selectively 
amplified by a high-frequency background wave. Additional preliminary experi- 
ments show that (non-degenerate) resonant quartets are selectively amplified by 
a high-frequency background wave when the test wavetrain has a frequency of less 
than 19.6 Hz. (Resonant triads cannot occur for test wavetrains in this frequency 
range.) We shall report a comprehensive set of experimental data and discuss 
selective amplification of resonant quartets by noise spectra with discrete 
components in a subsequent paper. 
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Appendix. Numerical solutions of the three-wave equations 
This section presents numerical solutions of the evolution equations for a resonant 

triad of ripple wavetrains to demonstrate the consequences of noise spectra with 
discrete components on a test wavetrain. These numerical results are somewhat 
qualitative, since the equations examined do not include spatial variations or 
coupling among triads. 

A. 1. Inviscid dynamics 

The evolution (three-wave) equations for any conservative, weakly nonlinear, time- 
dependent dynamical system are given by 

where the interaction coefficients for ripple wavetrains (Simmons 1969) are 

1. 3 

A,(t) is the complex amplitude of the ith member of the triad, (*) indicates complex 
conjugate, ej is the unit vector in the direction of thejth wave vector, j is interpreted 
as modulo 3, and the frequencies include a + / - sign such that 

14 - 14 - 1031 = 0. (A 3) 

To test the conjectured mechanism for selective amplification, we numerically 
solved (A 1)-(A 3) with initial conditions relevant to our experiments. The numerical 
scheme used was a fifth-order Taylor series expansion with a time step of 0.002 s. 
Differentiating (A 1) four times provides the higher-order derivatives for the 
expansion. The simulated experiment used a 25 Hz test wave in the presence of a 
small 60 Hz noise wavetrain. It was conjectured in $3.1.1 that these waves would 
interact to create a small 35 Hz difference wave and a (60, 35, 25) Hz resonant triad 
that would pot amplify. The 35 Hz wavetrain would then create a (35, 10, 25)- 
resonant triad that would not amplify. The 1OHz wavetrain would then create a 
(25, 15, 10) Hz resonant triad that would amplify. The first two triads in this 
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FIGURE 15. Numerical solutions of the inviscid three-wave equations showing the evolution of the 
(real) wave amplitude a, for the following initial conditions on complex amplitude A,: (a) A,, = 
0.004+0.003i em, A,, = 0, A,, = 0.04+0.03i cm; ( b )  A,, = 0.004+0.003i em, A,, = 0, A,, = 
0.04+0.03i cm; (c) A,, = 0.004+0.003i em, A,, = 0, A,, = 0.04+0.03i cm. 

scenario should not amplify, in accordance with Hasselmann’s (1967) theorem. 
According to this theorem, which is based on linear stability analysis, when two 
waves in a resonant triad are small relative to the third, then the dominant wave 
must have the highest frequency in order to amplify the smaller waves. Hence, the 
(25, 15, 10) Hz triad in our scenario is the first that could amplify. 

Figure 15 shows the numerical solutions of (A 1)-(A 3) for the 25 Hz wavetrain 
with a 60 Hz noise wavetrain. Column (a )  corresponds to  the initial triad interaction 
among the 60 Hz wavetrain, the 25 Hz test wavetrain, and their difference wavetrain. 
Here, the 25 Hz wavetrain has an initial amplitude that is ten times that of the 60 Hz 
wavetrain. The initial amplitude of the 35 Hz difference wavetrain is zero. During 
evolution, the 35 Hz wavetrain is created, receiving energy from the highest- 
frequency wavetrain (60 Hz). According to the linear stability analysis by 
Hasselmann, both small waves remain neutrally stable a t  their initial values. Hence, 
the 35 Hz wavetrain would not be created without nonlinearity, which allows the 
wave to grow but not to amplify beyond the initial amplitude of the highest- 
frequency wave. Since the 35 Hz wavetrain now has non-zero amplitude, it creates 
the (35, 10, 25) Hz resonant triad shown in column ( b ) .  Again, the 10 Hz difference 
wavetrain never grows larger than the highest-frequency wavetrain (35 Hz). The 
10 Hz wavetrain then creates the (10, 15,25) Hz resonant triad presented in column 
(c) .  A triad now exists in which the highest-frequency member has the most energy, 
and the lower-frequency members have frequencies in B, ; hence, these two waves in 
Bd are amplified, as shown. 
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A.2. Viscous dynamics 
Linear viscous damping is included in (A 1 )  by replacing 

d d  
dt dt 
- --f - + s,, 

where 8, is the linear decay rate. Henderson & Lee (1986) found that the decay of 
wavetrains studied using the present facility and procedures is accurately predicted 
by the model for an inextensible surface (Lamb 1932, p. 631), i.e. 

(A 5) 6 - Lk Lvw 4. i - 2 s(2 $1 
Numerical solutions of (A 1) with (A 4) and (A 5) are shown in figure 16 with the same 
initial conditions used in figure 15. In  contrast to the inviscid calculations, viscosity 
causes the 60 Hz noise wavetrain in the triad of column ( a )  to decay rapidly. 
However, i t  survives long enough to  excite the 35 Hz wavetrain, which then dies 
quickly owing to viscosity. Neither wavetrain is observable after about 0.4 s, or ten 
wavelengths of the 25 Hz wavetrain. In the triad of column ( 6 )  the 35 Hz wavetrain 
dies rapidly to viscosity, but first allows the 10 Hz difference wavetrain to be excited. 
The 10 Hz wavetrain survives the 35 Hz wavetrain, since it has a smaller decay rate; 
however, it has already begun to decay a t  0.2 s (five wavelengths of the 25 Hz 
wavetrain). In  addition the 10 Hz wavetrain never obtains an amplitude as large as 
the initial amplitude of the 35Hz wavetrain. I n  the triad of column (c )  the 
background wavetrains have frequencies in B,; hence, the 15 Hz difference 
wavetrain, whose amplitude is zero initially, does grow as large as the initial 
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amplitude of the 10 Hz wavetrain. Neither the 10 Hz nor the 15 Hz background 
wavetrains have begun to decay significantly after 0.8 s (twenty wavelengths of the 
25 Hz wavetrain). Additional computations show that the initial amplitude of the 
60Hz noise wavetrain must be at least &, of the test wavetrain in order for an 
observable 35 Hz difference wavetrain to be excited. 
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